Catalysis of electron transfer during activation of O2 by the flavoprotein glucose oxidase.
نویسندگان
چکیده
Two prototropic forms of glucose oxidase undergo aerobic oxidation reactions that convert FADH(-) to FAD and form H(2)O(2) as a product. Limiting rate constants of k(cat)K(M)(O(2)) = (5.7 +/- 1.8) x 10(2) M(-1).s(-1) and k(cat)K(M)(O(2)) = (1.5 +/- 0.3) x 10(6) M(-1).s(-1) are observed at high and low pH, respectively. Reactions exhibit oxygen-18 kinetic isotope effects but no solvent kinetic isotope effects, consistent with mechanisms of rate-limiting electron transfer from flavin to O(2). Site-directed mutagenesis studies reveal that the pH dependence of the rates is caused by protonation of a highly conserved histidine in the active site. Temperature studies (283-323 K) indicate that protonation of His-516 results in a reduction of the activation energy barrier by 6.0 kcal.mol(-1) (0.26 eV). Within the context of Marcus theory, catalysis of electron transfer is attributed to a 19-kcal.mol(-1) (0.82 eV) decrease in the reorganization energy and a much smaller 2.2-kcal.mol(-1) (0.095 eV) enhancement of the reaction driving force. An explanation is advanced that is based on changes in outer-sphere reorganization as a function of pH. The active site is optimized at low pH, but not at high pH or in the H516A mutant where rates resemble the uncatalyzed reaction in solution.
منابع مشابه
Spin effects in reductive activation of O2 by oxydase enzymes
Reductive activation of O2 by glucose oxidase and by copper amine oxidases (and also by tyrosine hydroxylase and lypoxygenase) illustrate very interesting spin chemistry. The rate-determining step in these processes is connected with electron transfer from reduced cofactor (E) to O2 and is, in fact, the triplet –> singlet intersystem crossing (ISC) at the stage of the radical pair O2 − . . . E+...
متن کاملNitroalkanes as reductive substrates for flavoprotein oxidases.
Nitroalkanes have been found to be general reductive substrates for D-amino acid oxidase, glucose oxidase and L-amino acid oxidase. These enzymes show different specificities for the structure of the nitroalkane substrate. The stoichiometry of the D-amino acid oxidase reaction is straightforward, consisting of the production of one mole each of aldehyde, nitrite and hydrogen peroxide for each m...
متن کاملDesign and Fabrication of Glucose/O2 Enzymatic Biofuel Cell
Enzyme-based biofuel cells (EBFCs) are systems that use a variety of organic compounds to produce electricity through oxido-reductase enzymes, such as oxidase or dehydrogenase as biocatalysts immobilized on electrodes. In this study, a single-chamber EBFC consisting of carbon electrodes that operating at ambient temperature in phosphate buffer, pH 7 is reported. The EBFC anode was based on gluc...
متن کاملQM/MM Study on the Mechanism of Aminophenol Oxidation by Functionalized β-Cyclodextrin as Oxidase Nanomimic
In this study, functionalized β-cyclodextrin (β-CD) by aldehyde group was investigated as an oxidase enzyme mimic for the amino phenol oxidation. All calculations were performed by GAUSSIAN 09 package using two layers ONIOM method at the ONIOM (MPW1PW91/6-311++G(d,p)/UFF) level. In the first step, H2O2 is encapsulated in the hydrophobic cavity. In the second step, H2<...
متن کاملVascular functions of NADPH oxidases.
NADPH oxidases belong to a group of enzymes that generate reactive oxygen species (ROS) by electron transfer from NADPH to molecular oxygen. The product of this reaction is the superoxide anion (O2 ), which undergoes secondary reactions. O2 inactivates NO to yield peroxynitrite and spontaneously or under catalysis of superoxide dismutases reacts to hydrogen peroxide. NADPH oxidases, therefore, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 1 شماره
صفحات -
تاریخ انتشار 2003